Conception, développement, déploiement et exploitation de vos plateformes, applications et données.
Contactez-nous !L’édition 4 du Paris Time Series Meetup s’est tenue hier soir. J’ai eu le plaisir d’accueillir David McKay, Developer Advocate InfluxData, qui est venu nous présenter la plateforme InfluxDB 2.0, le nouveau langage Flux et l’outil de collecte Telegraf (et les bonnes pratiques associées).
Vous pouvez d’ores et déjà retrouver les vidéos en ligne ; les présentations sont en anglais :
Et pour les ressources complémentaires mentionnées par David McKay :
Concernant l’édition 3 sur TSL et RedisTimeSeries, initiallement prévue en décembre 2019 et replanifiée le 21 janvier, elle aura finalement lieu le mercredi 25 Mars chez OVHCloud. Pour alimenter votre attente et comme indiqué dans le dernier billet de veille mensuelle, OVHCloud a publié erlenmeyer et vient de publier un billet de blog sur le sujet : TSL (or how to query time series databases).
Nous espérons vous y voir nombreux et en attendant, bon visionnage et bonne lecture !
Meilleurs voeux à tous pour cette nouvelle année !
docker-compose.yml et ensuite il montre les apports de Docker App, qui permet d’avoir un niveau de personnalisation supplémentaire. Ainsi, on peut avoir un seul fichier docker-compose.yml de référence et auquel on rajoute un fichier avec des propriétés par environnement ou par client ou par instance par ex. Une combinaison intéressante pour améliorer l’industrialisation de vos containers.Rendez-vous le 21 janvier prochain à la troisième édition du Paris Time Series Meetup consacré à TSL (billet introductif à TSL : TSL: a developer-friendly Time Series query language for all our metrics) et le module RedisTimeSeries qui apporte des fonctionnalités et des structures Time Seriies à Redis. Le meetup était prévu initialement le mardi 17 décembre mais a été reporté du fait des grèves.
Je n’ai plus qu’à vous souhaiter des bonnes fêtes de fin d’année ; nous nous retrouvons l’année prochaine !
Traefik, depuis sa version V1, permet d’envoyer des métriques vers différents backends (StatsD, Prometheus, InfluxDB et Datadog). J’ai enfin pris le temps d’activer cette fonctionnalité et de creuser un peu le sujet étant donné que le dashboard de Traefik V2 n’affiche plus certaines de ses statistiques.
La documentation de Traefik sur le sujet :
Commençons par créer une base traefik dans InfluxDB (version 1.7.8)
influx
Connected to http://localhost:8086 version 1.7.8
InfluxDB shell version: 1.7.9
> auth
username: XXX
password: XXX
> CREATE DATABASE traefik
> CREATE USER traefik WITH PASSWORD '<password>'
> GRANT ALL ON traefik to traefik
> SHOW GRANTS FOR traefik
database privilege
-------- ---------
traefik  ALL PRIVILEGES
> quit
Dans mon cas, l’accès à InfluxDB se fait en https au travers d’une (autre) instance Traefik. J’utilise donc la connexion en http plutôt qu’en udp.
Cela donne les instructions suivantes en mode CLI :
    --metrics=true
    --metrics.influxdb=true
    --metrics.influxdb.address=https://influxdb.domain.tld:443
    --metrics.influxdb.protocol=http
    --metrics.influxdb.database=traefik
    --metrics.influxdb.username=traefik
    --metrics.influxdb.password=<password>
J’ai gardé les valeurs par défaut pour addEntryPointsLabels (true), addServicesLabels (true) et pushInterval (10s).
Cela donne le Deployment suivant :
apiVersion: apps/v1
kind: Deployment
metadata:
  name: traefik2-ingress-controller
  labels:
    k8s-app: traefik2-ingress-lb
spec:
  replicas: 2
  selector:
    matchLabels:
      k8s-app: traefik2-ingress-lb
  template:
    metadata:
      labels:
        k8s-app: traefik2-ingress-lb
        name: traefik2-ingress-lb
    spec:
      serviceAccountName: traefik2-ingress-controller
      terminationGracePeriodSeconds: 60
      containers:
      - image: traefik:2.0.6
        name: traefik2-ingress-lb
        ports:
          - name: web
            containerPort: 80
          - name: admin
            containerPort: 8080
          - name: secure
            containerPort: 443
        readinessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 1
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        livenessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 3
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        args:
          - --entryPoints.web.address=:80
          - --entryPoints.secure.address=:443
          - --entryPoints.traefik.address=:8080
          - --api.dashboard=true
          - --api.insecure=true
          - --ping=true
          - --providers.kubernetescrd
          - --providers.kubernetesingress
          - --log.level=ERROR
          - --metrics=true
          - --metrics.influxdb=true
          - --metrics.influxdb.address=https://influxdb.domain.tld:443
          - --metrics.influxdb.protocol=http
          - --metrics.influxdb.database=traefik
          - --metrics.influxdb.username=traefik
          - --metrics.influxdb.password=<password>
Appliquer le contenu du fichier dans votre cluster Kubernetes
kubectl apply -f deployment.yml -n <namespace>
Sur le dashboard Traefik, dans la section “Features”, la boite “Metrics” doit afficher “InfluxDB”, comme ci-dessous :

Vous pouvez alors vous connecter à votre instance InfluxDB pour valider que des données sont bien insérées :
influx
Connected to http://localhost:8086 version 1.7.8
InfluxDB shell version: 1.7.9
> auth
username: traefik
password:
> use traefik
Using database traefik
> show measurements
name: measurements
name
----
traefik.config.reload.lastSuccessTimestamp
traefik.config.reload.total
traefik.entrypoint.connections.open
traefik.entrypoint.request.duration
traefik.entrypoint.requests.total
traefik.service.connections.open
traefik.service.request.duration
traefik.service.requests.total
Il ne vous reste plus qu’à utiliser Chronograf ou Grafana pour visualiser vos données et définir des alertes.
Un exemple rapide avec la répartition des codes HTTP dans Grafana :
